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We report a numerical study and symmetry analysis of the anomalous Josephson current in junctions coupled
with a two-dimensional electron gas �2DEG�. Taking the 2DEG with the coexistence of spin-orbit coupling
�SOI� and Zeeman field as an example, we determine the symmetry criterion for the appearing of an anomalous
supercurrent at zero phase difference. When the Zeeman field is unsuitably oriented with SOI, the system
possesses some symmetries which make the anomalous supercurrent zero and these symmetries are identified
here. The symmetry criterion for the anomalous Josephson effect found here is general and suitable for any
other junctions contacted with two conventional s-wave superconductors, for example, the superconductor-
�S-� ferromagnet �F� hybrid system and the S/F/S junction on the surface of topological insulator.
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I. INTRODUCTION

The supercurrent in a Josephson junction vanishes when
the phase difference between the two superconducting leads
is zero.1 In the anomalous Josephson effect, a supercurrent Ia
flows even at zero phase difference. This anomalous effect
has been predicted for Josephson junctions of unconven-
tional superconductors2–5 but so far there is no experimental
verification. Recent studies have shown that the anomalous
Josephson effect can also be found in junctions with conven-
tional s-wave superconductors if both spin-orbit interaction
�SOI� and a suitably oriented Zeeman field are present in the
coupling layer of the junction.6–10 Similar anomalous super-
current are also found in superconductor- �S-� ferromagnet
�F� hybrid structure without SOI �Refs. 11 and 12� and the
S/F/S junctions on the surface of topological insulator.13 The
chiral Dirac fermions on the surface of topological insulator
play the role of the SOI term and the anomalous supercurrent
in the S/F hybrid structure is related to the triplet supercon-
ducting correlation14–16 in the F layer. However, there is a
lack of proper understanding of the responsible mechanism
and a serious controversy over the existence conditions for
the anomalous supercurrent. Zazunov et al.10 studied a junc-
tion with a two-level quantum dot and found three necessary
conditions for the existence of an anomalous Josephson cur-
rent. Besides SOI and a suitably oriented Zeeman field, the
third necessary condition is that the quantum dot is a chiral
conductor. It is useful to point out here that the results in
Refs. 11 and 12 show that SOI is not necessary for the exis-
tence of the anomalous current. Reynoso et al.7 have found
an anomalous Josephson current in a quantum point contact
with SOI and a magnetic field. In these two studies quantum
confinement is present. Using the phenomenological
Ginzburg-Landau and the quasiclassical Eilenberger ap-
proach, Buzdin8,9 shows that anomalous Josephson current
exists when there are only ferromagnetic interaction and
SOI, which is not in agreement with Ref. 10.

From the viewpoint of symmetry, the anomalous super-
current is naturally related to the breaking of time-reversal
symmetry �TRS�.8,10 The anomalous supercurrent is zero
when the system has TRS.1 However, in junctions with fer-

romagnetic coupling with no TRS, there is no anomalous
supercurrent.1,17–19 This means that the breaking of TRS is a
necessary but not a sufficient condition for the anomalous
supercurrent. In view of the existing controversies, there is a
need of a systematic investigation into the origin of the
anomalous supercurrent, which is found here related to sym-
metry breaking in the junction.

In the present work, we present a numerical investigation
using a rigorous quantum-mechanical formalism and a sym-
metry analysis of the Andreev reflection coefficients in
Josephson junctions coupled with a two-dimensional elec-
tron gas �2DEG�. Our results show that quantum confine-
ment is not a necessary condition for an anomalous super-
current if both SOI and a suitably oriented Zeeman field are
present in the 2DEG. A previous study did not obtain the
anomalous supercurrent for a similar system because it has
used the quasiclassical approximation.20 More importantly,
we obtain the symmetry criterion for the anomalous super-
current, which are useful guidelines for orienting the Zeeman
field as well as designing new junctions with anomalous
supercurrent and superconducting rectifiers.21,22

II. MODEL AND NUMERICAL RESULTS

We consider a Josephson junction consisting of two con-
ventional s-wave BCS superconductors coupled with a
2DEG. Both Rashba SOI �RSOI� and Dresselhaus SOI
�DSOI� can be present in the 2DEG and a Zeeman field is
also present. In this model, the system lies in the x-y plane
and the interfaces, located at x=0,L, respectively, are per-
pendicular to the x axis, which is the current flow direction.
The effective Hamiltonian of the system is given by23,24

H =�
�k + hz hso

� + hxy
� 0 ��x�

hso + hxy �k − hz − ��x� 0

0 − ���x� − �k − hz hso − hxy

���x� 0 hso
� − hxy

� − �k + hz

� ,

where �k= �2

2m �kx
2+ky

2−kF
2� with kF the Fermi wave number,

hso=−i��x��kx+ iky�−��x��kx− iky� with ��x�=����x�−��x
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−L��, ��x�=����x�−��x−L�� the strengths of RSOI and
DSOI in the 2DEG layer, and hz=h�x�cos �m, hxy
=h�x�sin �mei	m with h�x�=h���x�−��x−L�� the strength
and the direction ��m ,	m� in the spherical coordinates of the
Zeeman field, ��x�=����−x�ei	/2+��x−L�e−i	/2� describes
the pair potential with � the bulk superconducting gap and
	=	L−	R the macroscopic phase difference of the two su-
perconductor leads. The temperature dependence of the mag-
nitude of � is given by ��T�=��0�tanh�1.74�Tc /T−1�.25

Since the momentum component in the y direction is con-
served, the wave function can be written in the form

�x ,y�=��x�eikyy and the Bogoliubov–de Gennes equation
can be easily solved for the superconductor leads and the
2DEG layer, respectively. The scattering problem can be
solved by considering the boundary conditions at the inter-
faces, i.e., the continuity of the wave functions and the step
change of their derivatives across the interfaces.26

The stationary Josephson current can be expressed in
terms of the Andreev reflection amplitudes by using the tem-
perature Green’s function formalism27

I�	,�� =
e�kBT

2�
�
�n,

1

�n

kn
+ + kn

−

�kn
+kn

−
�rh̄en − rēhn� , �1�

where kn
+ and kn

− are obtained from the wave vectors for
electron �k+� and hole �k−� by the analytic continuation E
→ i�n, rh̄en �rēhn� is analytic continuation of the Andreev
reflection amplitude rh̄e �rēh� from an electronlike �a
holelike� to a holelike �an electronlike� quasiparticle with 
representing the spin and ̄=−. It is easy to note that all the
propagating modes which are related to the Andreev reflec-
tion amplitudes have been normalized with their probability
current.24 The Matsubara frequencies are �n=�kBT�2n+1�,
n=0, �1, �2, . . ., and �n=��n

2+�2. The incident angle � is
related to ky through ky =kF sin �. By integrating over the
incident angle, the whole Josephson current is obtained as

J�	� = 	
−�/2

�/2

I�	,��cos �d� . �2�

Figure 1 shows the anomalous current-phase relations ob-
tained numerically for the junction. Various combinations of
the strengths of SOI and the Zeeman field are considered.
For the figure, the pair potential is chosen as � /�=10−3 with
� the chemical potential and the physical quantities are ex-
pressed in the dimensionless form. The unit of the strength of
SOI is �2kF /2m. The unit for the Zeeman field is � and the
length has the unit of 1 /kF. We can clearly see that an
anomalous Josephson current appears at zero phase differ-
ence for all the curves. The result of a pure DSOI is absent
because it is the same as that of a pure RSOI when the
Zeeman field points along the x axis instead of the y axis.
When both RSOI and DSOI are present, we only present the
result for the special situation where the two kinds of SOI
have the same strength. In this special situation, the results
are the same for the Zeeman field pointing along either the x
axis or the y axis. Figure 2 shows the dependence of the
absolute anomalous supercurrent on the direction of the Zee-
man field in the x-y plane. The z component of the Zeeman
field is ignored because all the anomalous supercurrents van-

ish if the Zeeman field points along the z axis. When only
RSOI is present, the anomalous supercurrent is pronounced
for the Zeeman field pointing along the y axis but vanish for
the Zeeman field pointing along the x axis. On the other
hand, the situation is the reverse for a pure DSOI. In the
special case where RSOI and DSOI have the same strength,
the eigen spin axis of the SOI is in the x-y plane and makes
an angle of �

4 with the x axis. The supercurrent depends only
on the misorientation angle between the direction of the Zee-
man field and this eigen spin axis. The anomalous supercur-
rent is zero when the misorientation angle is 0 or �

2 .
To realize the value of h considered here, one can reduce

the Fermi energy in the 2DEG junction �but without the

FIG. 1. �Color online� The total Josephson currents J�	� plotted
as a function of the phase difference 	 for various combinations of
the strengths of SOI and the Zeeman field. The Zeeman field points
along the y axis for all the curves. The length of the 2DEG layer
kFL=10� and the temperature T /Tc=0.01 with Tc being the critical
temperature.

FIG. 2. �Color online� The absolute values of the anomalous
Josephson currents as functions of the direction angle 	m of the
Zeeman field for various combinations of the strengths of RSOI and
DSOI. The Zeeman field lies in the x-y plane, i.e., �m=� /2, and
with the strength h=0.1. The other parameters are the same as those
in Fig. 1.
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quantum point-contact potential� studied by Reynoso et al.7

for the realization of the anomalous Josephson current. As a
result, � /EF ratio is increased to 0.5. We also found that the
anomalous current still exists for higher � /EF ratios �up to
0.5�. It is also possible to find the anomalous current in a
junction built from a superconductor, semiconductor, and fer-
romagnetic insulator, which induce the Zeeman splitting by
proximity effect. These materials form the heterostructure
proposed by Sau et al.28 for the realization of Majorana Fer-
mion modes. The required parameters can also be obtained
by adjusting the Fermi energy. We estimated the critical cur-
rents in these structures. They are similar in magnitude to
those found in other studies �e.g., Refs. 7 and 29� and there-
fore can be measured using the radio-frequencey method as
described in Refs. 29–31.

III. SYMMETRY ANALYSIS

For normal electron transport in systems without super-
conductors, symmetry analysis has been studied in both
spin-independent32,33 and spin-dependent transports.34–37 In
the following, we apply the method described in Ref. 36 to
charge transport in Josephson junctions. For our junctions
coupled with a 2DEG, the total scattering matrix S of the
system can be written as follows:


bnLL

L

anRR

R � =
rnLL,nL�L�
tnLL,nR�R�
�

tnRR,nL�L�
rnRR,nR�R�
� �
anL�L�

L

bnR�R�
R � , �3�

where a �b� denotes the right-going �left-going� wave ampli-
tudes, and L �R� denotes the left �right� superconductor. In
the labeling of the propagating modes, nL�R�=e for electron-
like or h for holelike quasiparticle, L�R� denotes spin. All the
propagating modes are normalized with their probability cur-
rent. Here rnLL,nL�L�

represents the reflection amplitudes for
quasiparticles incident from the mode nL�L� into an outgoing
mode nLL in the left superconductor. The other three blocks
in the scattering matrix have similar meaning. In writing Eq.
�3� we adopted the Einstein’s sum rule. For an energy E
��, the probability current conservation leads to the unitary
condition of the S matrix, S†S=1, which gives


anLL

L

bnRR

R � =
rnL�L�,nLL

� tnR�R� ,nLL

�

tnL�L�,nRR
�� rnR�R� ,nRR

�� �
bnL�L�
L

anR�R�
R � . �4�

For the 2DEG layer, the Hamiltonian for the electron is

He = �k − ��kxy − kyx� − ��kxx − kyy�

+ h�x sin �m cos 	m + y sin �m sin 	m + z cos �m� .

When only the SOI is present, i.e., h=0, the TRS is pre-
served in the system. We can write down the propagating
modes in the left and right superconductors as follows:

	e↑ = �u� 0 0 v� �T, 	e↓ = �0 u� − v� 0 �T,

	h↑ = �0 v� − u� 0 �T, 	h↓ = �v� 0 0 u� �T,

where u�=��1+� /E� /2e�i	/4, v�=��1−� /E� /2e�i	/4 with
�=�E2−�2 and the upper and lower symbols of � and �

denoting, respectively, the left and right superconductors.
The time-reversal operation T=−iy K �where K is the

complex-conjugation operator� changes 	n
���	 ,�� to

�n	n̄
���−	 ,−��, where �=L for the left superconductor or

�=R for the right one, + �−� denotes right-going �left-going�
propagating mode, �e=1 and �h=−1, and = �1 and ̄
=−. In the transformed state T��, the right-going and left-
going components for the mode n�� are �n�

̄�bn�̄�

�� and
�n�

̄�an�̄�

�� , respectively. Similar to Eq. �3�, we can have


�nL
̄LanL̄L

L�

�nR
̄RbnR̄R

R� � =
rnLL,nL�L�
tnLL,nR�R�
�

tnRR,nL�L�
rnRR,nR�R�
� �

�
�nL�
̄L�bnL�̄L�

L�

�nR�
̄R�anR� ̄R�

R� � . �5�

Comparison of Eqs. �4� and �5� leads to

rnL�L�,nLL
�	,�� = �nL

L�nL�
L�rnL̄L,nL�̄L�

�− 	,− ��

from which we can obtain the following relations:

rh↓e↑�	,�� = re↓h↑�− 	,− �� ,

rh↑e↓�	,�� = re↑h↓�− 	,− �� . �6�

From the combination of Eqs. �1�, �2�, and �6�, we can have
the conclusion that the total anomalous Josephson current is
zero �J�0�=0� when there is only SOI. The conclusion is
expected as the breaking of TRS is required for a nonzero
anomalous Josephson current.

When there is only Zeeman field, i.e., �=�=0, h�0, the
TRS is broken. However, there is another symmetry which
prevents the existence of an anomalous Josephson current.
This symmetry is related to the combined operation of the
time-reversal operator and a spin rotation operator. For the
Zeeman field in the direction ��m ,	m�, the spin operator in-
cluded in the combined symmetry operation should be cho-
sen along a direction perpendicular to ��m ,	m�, for example,
��m+ �

2 ,	m�. The combined operator can be written as
�x cos �m cos 	m+y cos �m sin 	m−z sin �m�T which
commutes with the Hamiltonian of electron. The full opera-
tor should be constructed in the electron-hole space as
follows:


nT 0

0 − n
�T
� , �7�

where n=x cos �m cos 	m+y cos �m sin 	m−z sin �m.
The form in Eq. �7� can ensure that the full operator com-
mutes with the Hamiltonians of the superconductors where
the electron-hole coupling � is present. For example, if the
Zeeman field is along the x direction, i.e., �m= �

2 , 	m=0, the
combined operator can be chosen to be �

z 0
0 −z

�T. The opera-
tion of the spin operators in the x ,y ,z direction on the propa-
gating modes are as follows:


x 0

0 − x
�	n

�� = 	n̄
��,
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y 0

0 y
�	n

�� = �n	n̄
��,


z 0

0 − z
�	n

�� = �n	n
��. �8�

We have �
z 0

0 −z
�T	n

���	 ,��=−	n̄
���−	 ,−��. In the trans-

formed state, the right-going and left-going components for
the mode n�� are −bn�̄�

�� and −an�̄�

�� , respectively. Then we
can obtain an expression similar to Eq. �5�


− anL̄L

L�

− bnR̄R

R� � =
rnLL,nL�L�
tnLL,nR�R�
�

tnRR,nL�L�
rnRR,nR�R�
� � �
− bnL�̄L�

L�

− anR� ̄R�
R� � ,

�9�

which also leads to Eq. �6� in comparison with Eq. �4�. So
the total anomalous Josephson current is zero. For other di-
rections of the Zeeman field, we can find the corresponding
symmetry operator and prove in a similar way that the
anomalous supercurrent is zero.

When both SOI and a Zeeman field are present, the
anomalous supercurrent is possible if the Zeeman field is
suitably oriented. When only RSOI exists, the numerical re-
sults show that the anomalous supercurrent is zero if the
Zeeman field points along the x or z axis. We can still under-
stand it in terms of symmetry. If the Zeeman field points
along the x or z axis, the system has the symmetry of yRyT,
where Ry is the reflection transformation about the x axis,
i.e., y→−y. yRyT changes 	n

���	 ,�� to −	n
���−	 ,��, the

right-going and left-going components for the mode n�� are
−bn��

�� and −an��

�� , respectively. Similar we obtain


− anLL

L�

− bnRR

R� � =
rnLL,nL�L�
tnLL,nR�R�
�

tnRR,nL�L�
rnRR,nR�R�
� � �
− bnL�L�

L�

− anR�R�
R� � ,

�10�

which leads to the following relation in comparison with Eq.
�4�:

rnL�L�,nLL
�	,�� = rnLL,nL�L�

�− 	,�� ,

i.e.,

rh↓e↑�	,�� = re↑h↓�− 	,�� ,

rh↑e↓�	,�� = re↓h↑�− 	,�� . �11�

Therefore the anomalous supercurrent is also zero. Similarly
when only DSOI exists, the anomalous supercurrent is zero
due to the symmetry related to the operator xRyT if the
Zeeman field points along the y or z axis.

In general, if both RSOI and DSOI are present, the
anomalous Josephson current is nonzero except for the Zee-
man field along the z axis. In the special case of �=�, the
situation is subtle. In this case, the Hamiltonian for the SOI

is HSOI=−��kx−ky��x+y�. We can see that the eigen spin
axis of SOI is always pointing to � �

2 , �
4 �. According to the

above discussion, the Zeeman field cannot point to a direc-
tion which is perpendicular to � �

2 , �
4 �; otherwise the symme-

try �x+y�T arises and leads to a zero anomalous supercur-
rent. Moreover, the anomalous supercurrent is also zero if the
Zeeman field is parallel to � �

2 , �
4 �. It is probably due to some

higher symmetry in the expression of Josephson current
which cannot be seen in the Hamiltonian. Thus the anoma-
lous supercurrent will be zero if the angle between the Zee-
man field and the eigenspin axis of SOI � �

2 , �
4 � is 0 or �

2 , as
shown in Fig. 2.

Our symmetry analysis shows that the appearance of an
anomalous Josephson current is possible only when the sym-
metries related to T, nT, and nRyT are all broken. This
symmetry criterion is general and not limited to the particu-
lar model used here because only the two s-wave supercon-
ductor leads and the symmetries of the interlayer have effects
in the symmetry analysis of the s-matrix elements. So the
symmetry criterion for the anomalous supercurrent are useful
guidelines for orienting the Zeeman field as well as design-
ing new junctions with anomalous supercurrent and super-
conducting rectifying behavior. For example, in another in-
teresting junction where two conventional s-wave
superconductor leads are connected with a ferromagnetic
trilayer,11,12 our symmetry criterion indicates that the ferro-
magnetic trilayer should have noncoplanar magnetizations. If
the magnetizations are coplanar, the symmetry nT remains
and prevents the anomalous supercurrent from appearing
where n is the direction vector perpendicular to the magne-
tization plane. Besides, the situation of the S/F/S junction on
the surface of topological insulator is similar to the case of
SOI. The formalism and the results of the symmetry analysis
on the anomalous supercurrent keep unchanged.

IV. CONCLUSION

In summary, we studied the existence conditions for the
anomalous Josephson effect using a formalism in which the
Josephson current is related to the Andreev reflection coeffi-
cients. We found that an anomalous Josephson current can be
produced by breaking some symmetries of the Hamiltonian.
These symmetries impose symmetry conditions on the An-
dreev reflection amplitudes and make the anomalous Joseph-
son current zero even when time-reversal symmetry is bro-
ken by a Zeeman field. The present formalism and the
principles are not just limited to 2DEG junctions but also
applicable to conventional superconductor junctions coupled
with other structures.
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